skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Qing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 4, 2024
  2. Free, publicly-accessible full text available June 1, 2024
  3. Abstract

    For a finite group , a ‐crossed braided fusion category is a ‐graded fusion category with additional structures, namely, a ‐action and a ‐braiding. We develop the notion of ‐crossed braided zesting: an explicit method for constructing new ‐crossed braided fusion categories from a given one by means of cohomological data associated with the invertible objects in the category and grading group . This is achieved by adapting a similar construction for (braided) fusion categories recently described by the authors. All ‐crossed braided zestings of a given category are ‐extensions of their trivial component and can be interpreted in terms of the homotopy‐based description of Etingof, Nikshych, and Ostrik. In particular, we explicitly describe which ‐extensions correspond to ‐crossed braided zestings.

     
    more » « less
  4. The space hurricane is a newly discovered large-scale three-dimensional magnetic vortex structure that spans the polar ionosphere and magnetosphere. At the height of the ionosphere, it has a strong circular horizontal plasma flow with a nearly zero-flow center and a coincident cyclone-shaped aurora caused by strong electron precipitation associated with intense upward magnetic field-aligned currents. By analyzing the long-term optical observation onboard the Defense Meteorological Satellite Program (DMSP) F16 satellite from 2005 to 2016, we found that space hurricanes in the Northern Hemisphere occur in summer and have a maximum occurrence rate in the afternoon sector around solar maximum. In particular, space hurricanes are more likely to occur in the dayside polar cap at magnetic latitudes greater than 80°, and their MLT (magnetic local time) dependence shows a positive relationship with the IMF (interplanetary magnetic field) clock angle. We also found that space hurricanes occur mainly under dominant positive IMF By and Bz and negative Bx conditions. It is suggested that the stable high-latitude lobe reconnection, which occurs under the conditions of a large Earth’s dipole tilt angle and high ionosphere conductivity in summer, should be the formation mechanism of space hurricanes. The result will give a better understanding of the solar wind–magnetosphere–ionosphere coupling process under northward IMF conditions. 
    more » « less